Time-dependent changes in human corticospinal excitability reveal value-based competition for action during decision processing.
نویسندگان
چکیده
Our choices often require appropriate actions to obtain a preferred outcome, but the neural underpinnings that link decision making and action selection remain largely undetermined. Recent theories propose that action selection occurs simultaneously, i.e., parallel in time, with the decision process. Specifically, it is thought that action selection in motor regions originates from a competitive process that is gradually biased by evidence signals originating in other regions, such as those specialized in value computations. Biases reflecting the evaluation of choice options should thus emerge in the motor system before the decision process is complete. Using transcranial magnetic stimulation, we sought direct physiological evidence for this prediction by measuring changes in corticospinal excitability in human motor cortex during value-based decisions. We found that excitability for chosen versus unchosen actions distinguishes the forthcoming choice before completion of the decision process. Both excitability and reaction times varied as a function of the subjective value-difference between chosen and unchosen actions, consistent with this effect being value-driven. This relationship was not observed in the absence of a decision. Our data provide novel evidence in humans that internally generated value-based decisions influence the competition between action representations in motor cortex before the decision process is complete. This is incompatible with models of serial processing of stimulus, decision, and action.
منابع مشابه
Response competition in the primary motor cortex : 1 Corticospinal excitability reflects response replacement during simple decisions
25 26 It has been suggested that during decisions about actions, multiple options are initially 27 specified in parallel and then gradually eliminated in a competition for overt execution. To 28 further test this hypothesis, we studied the modulation of human corticospinal excitability 29 during the reaction time of the Eriksen flanker task. In the task, subjects responded with 30 finger flexio...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملResponse competition in the primary motor cortex: corticospinal excitability reflects response replacement during simple decisions.
It has been suggested that, during decisions about actions, multiple options are initially specified in parallel and then gradually eliminated in a competition for overt execution. To further test this hypothesis, we studied the modulation of human corticospinal excitability during the reaction time of the Eriksen flanker task. In the task, subjects responded with finger flexion or extension to...
متن کاملCorticospinal excitability during preparation for an anticipatory action is modulated by the availability of visual information.
To intercept rapidly moving objects, people must predict the right time to initiate their actions. The timing of movement initiation in interceptions is thought to be determined when a perceptual variable specifying time to contact reaches a criterion value. If a response needs to be aborted, the performer must make a decision before this moment. It has been recently shown that the minimal time...
متن کاملInducing homeostatic-like plasticity in human motor cortex through converging
24 Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand 25 area of the human primary motor cortex (M1HAND) that controls stimulation induced changes in 26 corticospinal excitability. Here we combined two interventional protocols which induce long27 term depression (LTD)-like or long-term potentiation (LTP)-like plasticity in left M1HAND 28 through differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 24 شماره
صفحات -
تاریخ انتشار 2012